Stabilization of Cranial Cruciate Ligament Deficient Stifles Using a Novel Internal Transarticular Implant
Veronica Barkowski DVM, Neil Embleton BSc DVM, Helivet Mobile Surgical Services, Sundre, Alberta, Canada

Question
Can an internal transarticular implant effectively stabilize a cranial cruciate ligament (CrCL) deficient stifle?

Objectives
- Provide immediate and continuous translational and rotational stability.1
- Allow unimpeded normal range of motion.1
- Minimally affect stifle biomechanics.1-4
- Remain completely extracapsular.
- Be minimally invasive.

Implant
- ASTM F-138 compliant 316L stainless steel femoral and tibial components.
- Ultra high molecular weight polyethylene (UHMWPE) articular insert.
- Ball and stem projection of the femoral component interconnects with the tibial component via the travel channel of the articular insert.
- Each component fixed in place with three 3.5 or 4.0 mm cortical locking screws.

Materials and Methods
Patients
- 60 client owned dogs (66 stifles) with naturally occurring CrCL deficient stifles.
 - Weight 25.9 to 51.7 kg (mean 38.1 kg)
 - Age 1.1 to 14 years (mean 5.8 yrs)
Procedure
- Minimal medial parapatellar arthroscopy.
- Debridement of damaged portions of cruciate ligaments and menisci.
- No meniscal release procedures performed.
- Extracapsular application of implant in an isometric position.
- Implantation with NGD 3.5 mm cortical locking screws.

Results
- 7/66 lost to follow up.
- CL rupture: complete CrCL (80.3%), partial CrCL (19.7%), CaCL (24%).
- Meniscal tears: medial (53%), lateral(24%).
- Minor complication rate 11.9%.
- Major complication rate 17.0% included: disarticulation (n=4), screw failure (n=4), implant/surgical site reaction (n=2).
- Higher incidence of major complications in patients >40 kg (p<0.03).
- No clinical evidence of postliminary meniscal tears.

Discussion
- The implant provided effective translational and rotational stability.
- Complications were attributed to the learning curve associated with development of this new procedure.
- 4.0 mm cortical locking screws are now recommended in patients > 35 kg.
- Significant improvement in stifle ROM and lameness scores supports the hypothesis that this implant is an effective means of treatment for stifle instability.

References

Acknowledgements
New Generation Devices for their assistance with the development of this implant. www.ngdvet.com
Dr. Mark Rishniw, Bsc,Ms,PhD,DACVIM for his assistance with the statistical analysis.

Contact
Dr. Neil Embleton stifle.simitri@gmail.com